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Hydrodynamics of probabilistic ballistic annihilation
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We consider a dilute gas of hard spheres in dimensier2 that upon collision either annihilate with
probability p or undergo an elastic scattering with probability d. +or such a system neither mass, momen-
tum, nor kinetic energy is a conserved quantity. We establish the hydrodynamic equations from the Boltzmann
equation description. Within the Chapman-Enskog scheme, we determine the transport coefficients up to
Navier-Stokes order, and give the closed set of equations for the hydrodynamic fields chosen for the above
coarse-grained descriptiof@ensity, momentum, and kinetic temperajureinear stability analysis is per-
formed, and the conditions of stability for the local fields are discussed.
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[. INTRODUCTION (see[22] and[23,24 for the elastic cage For annihilation
dynamics, the ratio of particle diameter to mean free path
The hydrodynamic description of a low density gas ofvanishes in the long-time limit, such that fa>1 the
elastic hard spheres supported by an underlying kineti®oltzmann equation is valid at least at late tini28,21. For
theory attracted a lot of attention already more than 40 yearguch a dynamics, none of the standard hydrodynamic fields
ago[1-3]. It has now become a well established descriptior(i-€., mass, momentum, and eneygyassociated with a con-
[4]. A key ingredient in the hydrodynamic approach is theserved quantity. The_re are ther_efore f[hree nonzero dec_ay
existence of collisional invariantguantities conserved by rates, one for each field. Numerical evidence shows that in
the—instantaneous—collisionsThe question of the rel- the long-time limit, a non-Maxwellian scaling squtlon_ for
evance of a coarse-grained hydrodynamic approach is thergq-e homogeneous syit'eLn ?ppe@r@mofgen_eoTs (.:OOA'n%
fore more problematic when the kinetic energy is no longer astar;ce (HCZS) [15'2% Wi ICk also ek;asts hor 'neb‘ﬁt'c ; ?k:
collisional invariant[5]. This is the case of rapid granular Isp eres[l 5.]]‘ ?]t mgl IS known a Olljtbt e Stt?] 't'.y 0 3.
flows (that may be modeled by inelastic hard spheres in auer solution, the only existing result being that in one di-

first approach where the hydrodynamic picture, despite in E?"nension, with a bimodal initial velocity distribution, clusters
' " of particles are spontaneously formed by the dyna
cluding a hydrodynamic field associated with the kinetic en o' parce P y Y ynarfiés

Anh X In view of this situation we develop a hydrodynamic descrip-
ergy density, is nevertheless relialieee, €.9.[6-9 and o for probabilistic ballistic annihilation. The limiting case
Dufty for a review[10]). It seems natural to test hydrody- of yanishing annihilation probabilitp— 0 gives the known
namiclike approaches further and in more extreme condiresults for elastic dilute gasg&6], whereas the other limit
tions, and investigate a system where particles react so that . 1 yields the case of pure annihilation.

there existno collisional invariants The present article, fo- In order to derive the hydrodynamic equations, we make
cusing on the derivation of the hydrodynamic description foruse of the Chapman-Enskog method. We thus congiater
such a system, is a first step in this direction. leas) two distinct time scales in the system. The microscopic

The system we consider is made of an assembly of harime scale is characterized by the average collision time and
spheres that move ballistically between collisions. Whenevethe corresponding length scale defined by the mean free path.
two particles meet, they either annihilate with probabifity The macroscopic time scale is characterized by the typical
or undergo an elastic collision with probabilig —p). The  time of evolution of the hydrodynamic fields and their inho-
model of probabilistic ballistic annihilation in one dimension mogeneities. The fact that those two time scales are very
for bimodal discrete initial velocity distributions was intro- different implies that on the microscopic time scale the hy-
duced in[11], whereas for higher dimensions and arbitrarydrodynamic fields vary only slightly. Therefore they are on
continuous initial velocity distributions it was considered in such length and time scales only very weakly inhomoge-
[12]. When p=1, we recover the annihilation model origi- neous. Combined with the existence of a normal solution for
nally defined by Elskens and Fris¢h3], that has attracted the velocity distribution functioii.e., a solution such that all
some attention sincgl4-21. In one dimensionagain for time dependence may be expressed through the hydrody-
p=1), the problem is well understood for discrete initial ve- namic field3, this allows for a series expansion in orders of
locity distributions[15,16. On the contrary, higher dimen- the gradients, i.e., application of the Chapman-Enskog
sions introduce complications that make the problem muclmethod. The knowledge of the hydrodynamic equations thus
more difficult to treat[19,20. Only a few specific initial  obtained to first order allows us to perform a stability analy-
velocity conditions lead to systems that are tractable usingis. Taking the HCS as a reference state, we study the corre-
the standard tools of kinetic theofg21]. sponding small spatial deviations of the hydrodynamic fields.

Our starting point will be the Boltzmann equation, which  The paper is organized as follows. In Sec. Il we present
describes correctly the low density limit of granular gaseshe Boltzmann equation for probabilistic ballistic annihila-
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tion, and establish the subsequent balance equations. Section 1

1l is devoted to the Chapman-Enskog solution of the balance u(r,t) = mf ; dv vi(r,v;t), (6b)
equations. For this purpose we consider an expansion of the IR
latter equations in a small formal parameter. The solution to
zeroth order provides the hydrodynamic fields of the HCS. m

Assuming small spatial inhomogeneities, we make use of an n(r,t)kgd J a

explicit normal solution for the velocity distribution function

to first order. This allows us to establish the expression fowheren(r,t), u(r,t), andT(r ,t) are the local number density,
the transport coefficients and for the decay rates to first ordevelocity, and temperature, respectively. The definition of the
and thus the closed set of equations for the hydrodynamitemperature follows from the principle of equipartition of
fields. The technical aspects of the derivations are presenteshergy. In Eq(6c¢), kg is the Boltzmann constant and=v

in the Appendixes while our main results are gathered in Egs-u(r,t) is the deviation from the mean flow velocity. The
(47). In Sec. IV, we study the linear stability of those equa-balance equations follow from integrating the moments 1,
tions around the HCS. Finally, Sec. V contains the discussiomyv, and my?/2 with weight given by the Boltzmann equa-
of the results and our conclusions. Since from the point otion (1). We thus obtain

view of dissipation probabilistic ballistic annihilation shares

some features with granular gases, making several parallels an+Vi(nu) = - pa[f,f], (7a)
between those two systems will prove to be instructive.

T(r,0) = dv V2f(r,v;t), (60)

1 1
(?tui + _VJPU + UjVjui == p—w[f,Vif], i= 1, v ,d,
II. BOLTZMANN AND BALANCE EQUATIONS mn n

The Boltzmann equation for the one particle distribution (70)
function f(r,v;t) of a low density system of hard spheres
annihilating with probabilityp is given by AT+ VT + nide(PijVin +V,q)
(Ge+ vy VIR v t) = pl[f.f1+ (1 -p)I[f.f], (D) T o
where the annihilation operatdy is defined by[20] = pﬁ“’[f*f] - pn—dew[f,sz], (70)

_ where we have summation over repeated indicas,
J[f.gl=-0o" 1134ddvzvlzf(r,vz;t)g(r,vl;t) (2) = (U U, and p
R yrry )

and the elastic collision operatdg is defined by[22,23,27 olf,g] = Ud_lﬁlJ‘RZd v, AV, |Valg(r VoD, vait).  (8)
Idf.gl= ‘fd_lfRd dVZJ do(o-v1)0(= o - V1) In the balance equatiori3), the pressure tens@; and heat
flux g, are defined by
X(b™ = 1)g(r,vy;Hf(r,vast). ®3)
In the above expressions, is the diameter of the particles, Pi(r,H = mJHd dv ViVif(r,v;t)

V1,=V; -V, the relative velocityp,,=|v,4, 0 the Heaviside

distribution, o a unit vector joining the centers of two par- n

ticles at collision and the corresponding integral is running = f v f(r,v;)D; (V) + Eéip 9
over the solid angleg,=74"92/T'[(d+1)/2] wherel is the i

gamma function, ant™ an operator acting on the velocities

as follows[28]: e f dv S(V)(r,vit), (10
d
b™Vi,= Vi~ 2(vy,- 6) 0, (4) !
where 8=1/(kgT) and
b™vi=vi = (vi,- )0 (5 V2
SinceJ, describes elastic collisions, this operator conserves Dij(V) = m<V‘Vi - 55'> (1D
the mass, momentum, and energy. On the other hand,
describes the annihilation process and thus none of the pre- m d+2
vious quantities are conserved. SVv)= (—Vz— —kBT>Vi. (12
In order to write hydrodynamic equations, we need to 2 2
define the following local hydrodynamic fields: One sees from Eqs7) that when the annihilation probability
p— 0, all quantities are conserved. In addition, the long-time
n(r,t) = dv f(r,v;t), (6a)  solution of the system in this limit is given by the Maxwell
Rrd distribution[12].
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I1l. CHAPMAN-ENSKOG SOLUTION g o9 gy J? 15
In order to solve Eqg7), it is necessary to obtain a closed
set of equations for the hydrodynamic fields. This can bevhere a given order in the temporal hieraratiys) corre-
done using the Chapman-Enskog method, by expressing thgonds to the same order in the spatial hierard#). One
functional dependence of the pressure terigpiand of the  thus concludes that the higher the order of the spatial gradi-
heat fluxq; in terms of the hydrodynamic fields. Note that ent, the slower the corresponding temporal variation. Insert-
other routes have been developed as y&429. Athorough  ing expansiong14) and(15) in the Boltzmann equatio(i)
comparison of the different approaches seems, however, igne obtains
be a difficult attemp{29]. In order to apply the Chapman- ®©
Enskog method, it is necessary to make two assumptions. (E )\ka_ +v V)E N
The first one is that all temporal and spatial dependence of !
the distribution functionf(r,v;t) may be expressed as a

k=0 1=0

functional dependence on the hydrodynamic fields: = pJa[E R'f('),z A'f(')}
1=0 1=0
f(r,v;t) = f[v,n(r,t),u(r,t), T(r,0)]. (13) +(1- p)Jc[IE A'f“XIE A'f(”] : (16)
=0 =0

What is the physical justification for the existence of such a-ollecting the terms of a given order i and solving the
normal solutiof? Suppose that the variations of the hydrody-&duations order by order allows us to build the Chapman-
namic fields are small on the scale of the mean free path, fdrnSk0g solution.

example,(no® )YV In nj<1. Therefore, to first order the

functional d_ependence of the. di;tribution function may be A. Zeroth order

made local in the hydrodynamic fields, leading to the normal . . .

solution written above. Note that none of the hydrodynamic 10 zeroth order in the gradients, E4.6) gives

fields is associated with a conserved quantity. The theoretical (0)£(0) — (0) £(0) _ (0) £(0)

question that arises is to know if the new time scales thereby T =PI P+ (1 =) P, 1. 17
introduced by the cooling rates are shorter than what is alThis equation has a solution, describing the HCS, and which
lowed for the existence of a normal solutigt0]. For suffi-  obeys the scaling relation

ciently smallp this should be the case. However, in the re-

lated _context of _granular gases, thi§ point i_s not yet fO(r,v:t) = Lt)ﬁ(c). (18)
guantitatively clarified and is still subject to discussions v(t)

[10,30,31. The justification of the normal solution may be . L~ . .

donea posteriori by studying the relevance of the results The @pproximate expression féfc) was established ifil2]
through the appearance of the HCS, for exanipls25. The ~ and is recalled by Eq40). In Eq. (18), vr=[2/(Bm)]*? is
second assumption is based on the existen¢atdéasttwo  the time dependent thermal velocity, acdV /vy, V=v-u.
distinct time scales. The microscopic time scale is characterlhe existence of a scaling solution of the fo(d8) seems to
ized by the average collision time and the spatial length i®€¢ @ general feature that is confirmed numericadirect
defined by the corresponding mean free path. On the othdylonte Carlo simulations or molecular dynamiasot only
hand, the macroscopic time scale is defined by a typical tim&r ballistic annihilation[20] or granular gasef32], but for
scale describing the evolution of the hydrodynamic fieldsthe dynamics of ballistic aggregation as wdB,34.

and their inhomogeneities. The difference in those two time The functionf® is isotropic. Thus to this order the pres-
scales implies that on the microscopic time scale the hydrosure tenso(9) beCOfneSDi(jo):D(o)fsip wherep©@=nkgT is the
dynamic fields vary only very slightly. Thus, those fields arehydrostatic pressure, and the heat f{ag) becomes©=0.

on such time and space scales only very weakly inhomoge- The balance equation3) to zeroth order read

neous. This allows for a series expansion in orders of the

o 0)

gradients of the fields: gn=-pn&’, (1939
A= - O i=1,..d, 19b

f= O 4 NFD 4 \2D 4 o (14) W= porgy, (19b)

aT=-pTe?, (190

where each power of the formal small parameteneans a
given order in a spatial gradient. The formal parameter
may be seen as the ratio of the mean free path to the wave- 1

length of the variation of the hydrodynamic fields. This &9 = =[O0, (203
shows again the idea of the separation of both microscopic n

and macroscopic time and length scales. The Chapman-

Enskog method assumes the existence of a time scale hierar- g0 = iw[fm),vifm)]’ i=1,...d (20b)

chy, and thus of a time derivative hierarchy as well: Y oy

where the decay rates are
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o__M
g(T nksTd

For antisymmetry reasons, one sees from Ef)b) that

1
off®, V0] - Za[f0,f0]. (209

PHYSICAL REVIEW E70, 061102(2004)

1 1
{— D[f%o)T(?ﬁ £%ng, + > T0>} +(J- pg)}Ai _ PE%O)Bi

=A;, (283

0)_ :
.§ﬁ_ =0. The two other decay rates are given later on by Egs.

(43).

B. First order

To first order in the gradients, the Boltzmann equation

(16) reads
[0 +3]fV = - [6Y +v, - VIO, (21)

where

IO = pL[fO D]+ (1 - p)LLfO, V], (22)
with

LLfO fD]= =3, [fO D] - [fD O], (23

LLFO f0] == 3 [fO, §1] - g [fD 07, (24)

The balance equation@) to first order become

an+Vi(ny) = - pné, (253

k .
i + m—BnVi(nU +uViu=-pordl =1, .. d,

(25b)
2
AT+ UV T+ gV =- pTed, (250
where the decay rates are given by
2
&= ~alfO,10], (269

1 1
b= n—w[f“”,vif(l)] + n—w[f“%vif“”], i=1,...4d,

u:

b Nor vt
(26b)
2 m
(1) = _ 2 1§00 )7 4 0 \2§(1)
& = elf7 1] nkBwa[f V2]
+ 0,20, 26
n@wa[ : ] (260

By definition we know thatf” must be of first order in
the gradients of the hydrodynamic fields; therefore for a lo

density gag35]
f(l)zAiVi In T+BiVi In n+CijVJ‘Ui. (27)

The coefficients4;, B;, andC;; depend on the fields, V, and
T. Inserting Eq(27) in Eq.(21) and making use of Eq$13),

W,

{= P& Tor+ &nay + &+ (3 - pOIE; - i’ A, = B,

(28b)
{~pl&PTor + &Pna,] + (3 - pO)IC; =Cyj, (280
where
\Y kgT of©

A= _'_[ij(O) - L_, (293

kgT of @
Bi=-VfO-2-—— (29b)

Y
Ci = i[v.f(o)] _ }i[v 018, (290

VAR dov, A

and(} is a linear operator defined by
0010 g1 - 7 rco 14 o)
0g=fO4Vf >,g]—&—vivT§ui [1°.9]+ ——T&r (1],

(30)

whereg is either A;, B;, or Cj;, and the functionalsgl), u_l),

and£! are obtained from Eq$26) upon replacing® by g.

It is possible to show that from Eq&9) the solubility con-
ditions ensuring the existence of the functios 5;, andC;;

are satisfiedsee, e.g.[35]).

C. Navier-Stokes transport coefficients

The hydrodynamic description of the flow requires the
knowledge of transport coefficients. The concern of the
present section is to determine the form and coefficients of
the constitutive equations. This can thus be achieved by link-
ing those macroscopic transport coefficients with their mi-
croscopic definition. Using a first order Sonine polynomial
expansion, it is then possible to find explicitly the transport
coefficients to first order. This will allow us to express the
functions.4;, B;, andC;; in terms of the transport coefficients,
thus determining the distribution functidib.

The pressure tensor may be put in the form

2
Py(r,t) =p 4 - ﬁ(Vin +Vju - a@ijUk) = {6 Vi,

(31

wherep@=nkgT is the ideal gas pressure, ands the shear
viscosity. For a low density gas, the bulk viscosityan-
ishes; therefore the last term in the pressure tensor may be
neglected[10,35,3§. Fourier’s linear law for heat conduc-
tion is

Gi == «ViT—uVin, (32

(18), and(19), one obtains the following set of equations for where k is the thermal conductivity ang a transport coef-

Ai, B, andCj; (see Appendix A

ficient that has no analog in the elastic case. A similar quan-
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tity appears for granular gases, which again is nonvanishing

in the inelastic case onlj26,37.

The identification of Eq(31) with Eq. (9) using the result

of the first order calculation yields

Pi(jl):fddv D;;(V)f. (33)
R

Similarly, the identification of Eq(32) with Eq. (10) using

the first order calculation leads to

g = J ddv S(V)fW, (34)
R

The main steps of the calculation are shown in Appendix B,

and the result is

1
n* = 771 =1 (353
0 * *
Vy~ Epf(To)
SRR SN AP |
KO -2 g(o) d
(35b)
n/.L 2 |: 0)* 1 :|
M*= o= g P& «
Tiko 20, - 3p&Y" - 2p£" d
(350
wherea, is the kurtosis of the distribution
4 1
=———— | dviOv)-1, 36
% d(d+2)v$nLd v (38
and
d(d +2) kg
, 37
Ko= 2(d-1)m /0] (37)
_d+21(d/2) VmlkgT
M= TgT @2 a1 (38)
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f dv S(V)JB, f dv S(V)QB,
; :i Rd —pi R

"o f avswvg 0 f dV S(V)B,
R4 R4

(39b)

*

f dV D;; (V)Jc;
. 1 Jpd
v =—

Yo
Rrd

. fddv Dy (V)QC;
R

-p—
Yo

Rd

(390

It must be emphasized that the above results are still exact
within the Chapman-Enskog expansion framework. How-
ever, the relationg39) and the decay rate®0) cannot be
evaluated analytically without approximations. For this pur-
pose, we first consider the Sonine expansionff®r It was
shown that to first non-Gaussian contribution in Sonine poly-
nomials the distributiorf© reads[12]

\Y; 1v4 d+2V? dd+2
f<°><V>:%M(_> e [ -t )}
UT 1% 2UT 2 UT 8

(40)
where
V 1 2, 2
M(—) = —gz€ T 41
vy a2 (41)
is the Maxwellian and
3-22
2,=8 k (42)

4d+6-\2+[(1-p)/pl8\2(d-1)

The coefficienta, was shown to be in very good agreement
with direct Monte Carlo simulationgl2]. The relation(40)
allows us to compute the decay ratsse Appendix €

. d+2 1
£ = ( 1-a,— 16) (433
d+2 8d+11
o_HY"<
& ad <1+ - ) (43b)

Next, we retain only the first order in a Sonine polynomial

are the thermal conductivity and shear viscosity coefﬁment@xpansion applied tod, B, andC. We thus have

for hard spheres, respectiveli38]. éo) -§<°)/ vy and §(°

/vo are the dimensionless decay rates, wheaga

IO )1 7m0, with p©=nksT. The dimensionless coefficients,
andv are given hy

f dVv S(V)JA4, f dVv S(V)QU,
= 1 Jgd _ pi Rrd

T f v s\V)4 0
]Rd

f dv S(V)A;
Rrd
(393

AV) =a M(V)S(V), (448
B(V)=bM(V)S(V), (44b
C(V) =coM(V)D(V), (440

wherea,, by, andc, are the coefficients of the development.
This allows us to compute the relatio(39). For this pur-
pose, as already shown the probabilistic collision operator
given by Eq.(22) can be split into the sum of an annihilation
operator and of a collision operator. Each contribution may
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thus be treated separately. Therefore we make use of previ-

ous calculations for the collision proceg39]. The calcula-

PHYSICAL REVIEW E70, 061102(2004)

2

GT+uViT+
t (] nde

(PyViuj + Viq) = - pT[£Y + &V,

tions for the annihilation operator are shown in Appendix D,

and the final results read

v:=v;=pﬁ[16+27d+8d2
, 2880+ 1544 - 265812 - 153af® - 20(114}
2 32d(d + 2)
d-1 1
1-p——|1+ay_], 45
+(1-p) " ( +az32> (453
. 278 + 37% + 96d% + 2d®
=p—|3+6d+2d*-
Y de[ TodT g, 32(d+2) }
+(1- )(1—a i) (45b)
p 235"

One may check that these expressions approach the known

elastic values whep— 0 [39]. The transport coefficients are
thus found from Eqgs(35) using Eqs(37), (38), (42), (43),
and(45).

In order to establish the decay rates to first order, on
needs the distributiof® (see Appendix E

:83

n

2m

fHV)=- /\/l(V){mS(V)(KViT +uVin)

+ gDij(V)VJ—ui]. (46)

D. Hydrodynamic equations

The pressure tensor and the heat flux defined by B4s.

(470

where the decay rated” and £” are given by Eqs(43a
and (43b), respectively.P;; and g; are given by Eqs(31)
with £=0, and(32), respectively. The rateg”, &, and "
may be calculated using their definitig@5) and the distri-
bution (46). We find (see Appendix F

&V=0, (483)
1 1 \
fﬁil):‘vT(K* $ViT+M* HVi”)ﬁu (48b)
&v=o, (480
where
. (d+2)? [1+a - 86- 101j+32d2+88d3+28d4}
U 32(d-1) 2 32(d+2) '

. (49

We thus have a closed set of equations for the hydrodynamic
fields to the Navier-Stokes order.

IV. STABILITY ANALYSIS

The hydrodynamic Eqg$47) form a set of first order non-
linear partial differential equations that cannot be solved ana-
lytically in general. However, their linear stability analysis
allows us to answer the question of formation of inhomoge-
neities. The scope of the present study is to find under which

and (32), respectively, are of order 1 in the gradients. Thusconditions the homogeneous solution to zeroth order, i.e., the

their insertion in the balance equatiof® yields contribu-

HCS, is unstable under spatial perturbations. To this end we

tions of order 2 in the gradients. Consequently there are se€onsider a small deviation from the HCS and the lineariza-

ond order termgso called Burnett ordgrthat contribute to
the first order(so called Navier-Stokes orddransport coef-
ficients, and the knowledge of the distributiéf? is thus

necessary. Indeed, use was made of the zeroth order relations
P;=p?8; and ;=0 to establish the balance equation for

energy(25¢). However, it was shown in the framework of the

weakly inelastic gas—and consequently for an elastic gas—
that those Burnett contributions were three orders of magni-

tude smaller than the Navier-Stokes contributi¢®6]. For

the sake of simplicity, we will here neglect those secondyhere the decay exponents age=£2(0)t,,

order contributions. For small annihilation probabilitips

this approximation is thus likely to be justified. However, we
havea priori no control on the error made when the annihi-

lation probabilityp is close to unity.
The hydrodynamic Navier-Stokes equations are given b

an+Vinu) = - pr €2 + €07, (479

P huVG =D =
au; + mnVJP” +u Vi = vagfji Ji=1,...d,

(47b)

tion of Egs.(47) in the latter perturbation. Equatiorf49)
give the time evolution of the HCS, which is found to be

np(t) = no<1 + pi)_yn, (50a)

Tu(t) = To<1 + pf)_w, (50b)
0

— 0
yr=§& (O},
and the relaxation timq;1=§ﬁ1°)(0)+§<T)(0)/2. The subscript
H denotes a quantity evaluated in the homogeneous state.
The density and temperature fields of the HCS are thus de-
creasing monotonically in time, with exponents that depend
Yon the annihilation probability through the kurtosis of the
velocity distribution. The explicit expression of the decay
exponents may be obtained straightforwardly using Egs.
(43).

The linearization procedure used here follows the same
route as the method used for granular gd2€$. We define
the deviations of the hydrodynamic fields from the HCS by
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r,t)=y(r,t) —yy(, 51 d « d-1 . *
8Y(r.0 = y(r.0 = yu(®) (51) [&_T_p o, 471, kz}wklﬂk[(l_pguﬂ* e
wherey={n,u, T}. Inserting the form(51) in Egs.(48) yields X
differential equations with time dependent coefficients. In +(1-pgx* )6 (n]=0, (55b)
order to obtain coefficients that do not depend on time, it is

necessary to introduce the new dimensionless space and time R T _
scales defined by o7 péy o k® [wy, (7) =0, (550
= S ®) \| (524 {i+ gor, d+2 *w}a()
27 N kgTu(®) or PET T oo AT
< d+2 2.
1(! * {2@#’) AETIT kZ}pk(ﬂ + ikwi () =0,
== | dsweu(9), (52b) 2d-1)
2
0 (550
as well as the dimensionless Fourier fields WherewkH andka are the longitudinal and transverse parts
of the velocity vector defined byvk”:(wk-ék)“ek and wy
(9= n(7) (539 =W Wi, where &, is the unit vector along the direction
P ny(7) given byk. Equation(55¢) for the shear mode is decoupled
from the other equations and can be integrated directly so
that
=\ (D) (53b) =w, (0 K 56
Wk(T) - kBTH(T) k 7)s Wki(T) - Wki( )exn:sl(pv )T]l ( )
where
ST (7) .1
0 = o 53C = (0) - * |2
k(T) TH(T) ( ) SL(p!k) pgT 27] k . (57)
where The transversal velocity field, lies in the(d-1) dimen-
sional vector space that is orthogonal to the vector space
_ generated bk, and therefore the modg identifies(d-1)
Sy(n=| die™sy(,q). (54)  degenerate perpendicular modes. The longitudinal velocity
R field W, lies in the vector space of dimension 1 generated by

From Eq.(524), it appears that lengths are made dimension-k' Hence there are three hydrodynamic fields to be deter-

| K fthe time d d ¢ h mined, namely, the density,, temperatures,, and longitu-
ess making use of the time dependent mean free path as .| yelocity fieldw, =wj &. The linear system thus reads
reference scale. Making use of Ed53) and (52) in Egs. I I

(47), the linearized hydrodynamic equations read Pk Pk
; V.Vk” =M - WkH , (58)
{(9—7 +2pgY ]pkm +p&Y" O (7) + ikwi (1) =0, B b

(559 with the hydrodynamic matrix

- 2pe” - ik - pe?”
Sk-pgut)  pe Ll Cika-peet)
M— U T d u (59)
d+2 2 d+2
-2 0* _ * 12 - Zik _RdOr M 2
péT 2d-1™ d T T 2d-1)"

The corresponding eigenmodes are given Ipy(k) nation of the eigenmodes; thus only the biggest real part of
=exds,(p,k) 7], n=1,...,3, wheres,(p,k) are the eigenval- the eigenvalus,(p,k) has to be taken into account to discuss
ues of M. Each of the three fields above is a linear combi-the limit of marginal stability of the parallel mode of the
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duy (1) = ukL(O)ex[<— %n* kzr). (61)

The exponential decay in the reduced variableganslates
into a power-law-like decay in the original varialilg¢since
the exponenk=k(t) depends itself on tinjeIndeed, the in-
tegration of Eq.(190 yields 7=—In[T,(t)/T,4(0)]/2&"",
which we replace in Eq61) and make use of the homoge-
neous solutionly(t) given by Eq.(50b) in order to finally
obtain

0 0.1 0.2 0.3 04 0.5
k

£\ K214t
) : (62

FIG. 1. Real part of the eigenvalues in dimensionless units for éuki(t) = uki(o)<1 +p£
probabilistic ballistic annihilation witpp=0.1 andd=3. The disper- )
sion relation obtained from Eg57) is represented by a dashed line Wherety=to/v4(0) is the dimensionless relaxation time. In
(labeleds, ) whereas the three remaining relations obtained uporthe linear approximation the perturbation of the transversal
solving Eq.(59) are represented by continuous lingabeleds,). velocity field therefore decays evensf (k,p)>0. The re-
scaled modes witk<k; are linearly unstable.
velocity field. Figure 1 shows the real part of the eigenvalues However, a crucial point is that for any redinite) sys-
for p=0.1 andd=3 (obtained numerically tem, the wave numbers are larger tham/R (assuming a
One may identify three regions from the dispersion rela-cubic box of size.), which corresponds to &me dependent
tions. We first definek, (dimensionlessby the condition ~dimensionless wave numbég,,=2m/(Lna"), which in-
Res, (k,,p)]=0, ie., creases with time as b/ This lower cutoff therefore inevi-
tably enters into the stable regiép,;,>k , so that an insta-
bility may only be a transient effect. In other words, an
2p§<TO)* unstable mode associated with a given valuekoforre-
kp=\— (60) sponds to a perturbation at a wavelength which increases
K with time in real space, and ultimately becomes larger than
system size. However, at late times, the Knudsen number
defined as the ratio of mean free péatthich is proportional
to kin) Over system size becomes large, which should invali-
date a Navier-Stokes-like description. Similarly, the present
coarse-grained approachaspriori restricted to low enough
values ofk. Given thatk, increases quite rapidly witp (see
Fig. 2), the stable regiok>k, might correspond to a “non-
hydrodynamic” regime whep is larger than somgifficult
to quantify) threshold. Conclusions concerning the stability
%5t the system for such parameters rely on the validity of the
hydrodynamic descriptio(which could be tested by Monte

andk; by max Res(k;,p)]=0 (the expression fok; is too
cumbersome to be given hgrave havek,<k,. Figure 2
shows the dependence &f and k; as a function of the
annihilation probabilityp. Then for allk>k, all eigenvalues
are negative and therefore, according to &), correspond
to linearly stable modes. Fére [k;,k, ] only the shear mode
wy of the velocity field is linearly unstable. In the case of
granular gases in dimension larger than one this region e
hibits velocity vortices[25,40,43, with a possible subse-
qlé)(fnt [g,?”"”ear coupling to den5|ty_mhomogenemes._ I:rombarlo or molecular dynamics simulationshich is beyond

& =4 /vy and Eq.(52b) one mayo|)r*1tegrate Eq190 N the scope of the present article.

order to find Ty(7)=T,(0)exd~2pé" 7]. Then equating At this point, we conclude that the system may exhibit
Egs.(53b) and(56), making use of the latter expression for transjent instabilities, but safe statements may only be made

Th(7), of Eq.(57), and of Eq.(53b) for 7=0, one finds for very low values ofp for which k, is low enough to
guarantee that the hydrodynamic analysis holds. The stable
04 PR " - » region is then ultimately met irrespective of system size.
N — T With the above possible restrictions in mind, it is instruc-
o3t 7 ] tive to consider the counterpart of Fig. 1 for “large” values of
- T p (see Fig. 3 For p>0.893..., we obtain the unphysical
:'. 02 / result that some eigenvalues increase and diverge upon in-
’ e creasingk. An a priori similar deficiency was reported for
the inelastic Maxwell model where some transport
L 1 coefficients—which are obtained exactly within the
Chapman-Enskog method—diverge for strong dissipation
0 s , [32].
0 0.1 0.2 03
[ V. CONCLUSION
FIG. 2. Wave numberk, andk, in dimensionless units as func- In this paper we construct a hydrodynamic description for
tions of the annihilation probability for d=3. probabilistic ballistic annihilation in arbitrary dimensiah
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of the hydrodynamic fields. Again, there must be a clear
separation between the macroscopic time scales described by
those decay rates, and between the microscopic time scales.
This separation of scales is required in the hydrodynamic
approach in order to make use of the hydrodynamic fialds
u, and T that are associated with nonconserved quantities.
The decay rates having the dimension of the inverse of a
time, their inverse thus defines a time scale. If those decay
rates increase, the associated time scales decay. In our case,
3 . . we clearly introduce three such time scales that are supposed
0 05 ! 15 2 to be macroscopic; one for each nonconserved field. It is
k therefore required that the maximum of these decay rates
FIG. 3. Real part of the eigenvalues in dimensionless units ford€fines a macroscopic time scale that is much bigger than the
probabilistic ballistic annihilation witp=0.95 andd=3. The figure ~ Microscopic one. Nevertheless, those decay rates increase as
caption is the same as for Fig. 1. a function of the annihilation probability and hence the de-
crease of the associated time scale. One question that arises

=2, where none of the hydrodynamic fields can be associls to determine for which value qf the smallest time scale

ated with a conserved quantity. The motivation is not only tolntroduced by the decay rates is of the order of the micro-

discuss the possibility of large scale instabilities in such &copic time scale—which increases as a function of time

system, but also to provide the starting point for furtires- ~ because of the decreasing density of particles remaining in

merica) studies centered on the applicability of hydrody- the system. When this is the case, the hydrodynamic descrip-

namics to systems in which there are no collisional invari-tion becomes irrelevant and one may not make use of the

ants. To this aim, we consider the low density and long-timgi€ldsn, v, andT any more. As the parametgrcontrols the

regimes in order to make use of the Boltzmann equation wittlissipation in the system, the question at hand here—left for

Chapman-Enskog method then allows us to build a systemi@lidity of hydrodynamics for granular gases with “low” co-

atic expansion in the gradients of the fields, with an associéfficients of restitution.

ated time scale hierarchy. We consider only the fiNgvier-

Stoke$ order in the gradients to build the hydrodynamic ACKNOWLEDGMENTS

equations describing the dynamics of probabilistic ballistic

22{;3::2:1'23' f:—ohrﬁ :Linmg:gggggf'ggsmil% ?lee%?gcziar‘]tgesBﬁi_ﬁsgful disqussions: This work was partially supported by the

nett contributions and restricting ourselves to the first non—SW'.SS National Science Four'1dat'|c'm and the French “Centre

: . - X - . National de la Recherche Scientifique.”

Gaussian term in a Sonine expansion. We then linearize the

hydrodynamic equations around the HCS. The subsequent

dispersion relations inform on the range of the perturbation’s

wavelength and time scales for which the system may exhibit

density inhomogeneities. Using the normal solutiofil3), the scaling forn{18), and
Interestingly, the behavior of the dispersion relations andhe balance equationd9) one may rewrite the right hand

of the wave numberk, andk; is qualitatively similar to its  side of Eq.(21) in such a way that

counterpart obtained fofinelastio granular gase$26,42.

This leads us to conclude that some features of those models [3 +JIfY = AV, In T+ BV, In n+C;Vu; + pQfY,

do not depend on the details of the dynamics, but rather on (A1)

the parameter controlling the dissipati@geferring to the ex-

istence of nonconserved quantijiés the system, namely ~ WhereVi=v;-u;

[or (1-a?) in the case of granular gases, wheres the 5O of

restitution coefficierit However, a specific feature of our Qf0 = O - —p oDy — T (A2)

model is that the mean free path increases rapidly with time. N, G

Consequently, even if the stability analysis leads us to thgng

conclusion that this feature drives the system in a region

We acknowledge J. Piasecki, I. Bena, and J.J. Brey for

APPENDIX A: INTEGRAL EQUATIONS FOR A, B;,
AND C; TO FIRST ORDER

where the homogeneous solution with a vanishing flow field A =-V ﬂ(m - leﬂ (A3a)
is stable, the associated Knudsen numbers may be too large ! YT m v, '
to validate our coarse-grained approach. At very small values
of p, however, the stable regiqk>k, with the notations of kaT af©
Sec. IV) should be relevant, but then the effects of transient B =-Vf@-2-— (A3b)
instabilities in the case where the system is large enough to m
allow for ky,in<<k, or kynin<k; seem difficult to assess. o

Another point to emphasize is the amplitude of the dissi- C. = i[V,ﬂO)] + ETL& (A3c)
pation in the system, which appears through the decay rates LAV d o1 "
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The velocity dependence & occurs only throughV/v-.

Because of the normalization the temperature dependence of

the function f© is of the form T-¥2f@(\/T?), and one
obtains

of@ 1 9
-T—=>—[VfO].

(A4)
aT 24V

The insertion of Eq(A4) in Egs.(A3) yields the relations
(29).

Using the scaling fornd18) and by definition of the decay
rates(20) one has

510) — éI'O) —~ nTl’Z. (A5)
This yields the relations
Yt Ly (A6)
and
% =& (A7)

where £%={£”  £7}. Using the form(27) in the left hand
side of the Boltzmann equatiq21) and making use of the

PHYSICAL REVIEW E70, 061102(2004)

1 1
n:——f dv m\Af©. (B4)
1 O)d Rrd
Vr]_épT

Using the hydrostatic pressup® =nksT with the definition
(6¢) for the temperature, and dividing E¢B4) by 7, we
finally obtain Eq.(359).

The insertion of Eq(27) in Eq. (34) gives

q = J ddv S(V)AV)VIn T+ J ddv S(V)B(V)ViInn.
R R

(BS)
The identification of Eqs(B5) and(32) yields
1
“=TAT) dv S(V)A(V), (B6a)
-1 dv S(V)B(V) (B6b)
w==nl SV)Bi(V).

R

The fact thatu#0 is due to the annihilation process.
Integrating Eqs(29a) and (29b) over V on RY with weight
-S(V)/d and making use of EqB6), then making use of
Tor(Tk)=3Tk/2, Tor(nu)=3nw/2, and nd,(Tk)=nd,(nu)
=0 obtained from functional dependence analysis, it follows

relations(A6) and (A7) one obtains after some calculations that

the relationg28).

APPENDIX B: EQUATIONS FOR THE TRANSPORT
COEFFICIENTS

As we will apply a Sonine expansion, the symmetry prop-

erties of A(V) and B(V) are the same as those 8fV),

whereas the properties @(V) are the same as those of

D(V). Thus the insertion of Eq27) in Eq. (33) yields

Pi(jl) = fRd dv Dij(V)Ck|(V)VkU| . (Bl)

The identification of Eqs(B1) and (31) yields (see, e.g.,
[36])

1

7T d-1)(d+2)

fddv D;(V)C;(V). (B2
R

Integrating Eq.(28¢) over V in RY with weight —1[(d-1)
X(d+2)]D;;(V) and making use of EqB2) one obtains

[ p&PTor - p&ona, + v,1n

1
__mJRddV D|J(V)C” (B3)

Functional dependence analysis shows that»=0 and
Torn=ml/2. Using the definitiong11) for D;;(V) and (290

1 1

-1 1l oo _lf _
K_VK_pr(TO)TlZpgg K d \h‘ddv S(V)A'(V)}’

(B73)
11

3 n
b= SpE0 - ped

|:p§£|-0)TK— lf av S(V)Bi(V)} .
dJga

(B7b)

Using Egs(293), (29b), (12), and(42) one may calculate
the integrals appearing in the right hand side of E§3):

d+2nkg

n
= Rddv S(VA(V) =~ 5 m—ﬁ(2a2+1), (B8a)
1 d+2 1
E]Ld dVv S(V)B;(V) = - Tﬂz—mzaz. (B8b)

The insertion of Eqs(B8) in (B7) yields Egs.(35b) and
(350.

APPENDIX C: EVALUATION OF &% AND &%°

The decay rate€20g and (200 may be computed using
the definition(8) and Eqgs.(40) and (41). We first change
variables toc;=V;/vt, i=1,2, then toc;,=c;—c, and C
=(cy+Cy)/2 in order to decouple the integrals. Next, the in-

for C;;(V), itis possible to compute the right hand side of Eq.tegrals being isotropic with a symmetric weight, only even

(B3), which gives

powers of the components & and c,, will give nonzero

061102-10
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contributions. Thus the term&C-c;,)? in the integrals be-
comeCzciZ/d. Finally, the resulting integrals may be com-

puted using the following relatiof20]. If we define

1 25 o2
Mpp= — J , deidCe €17/2g72C°ch.CP, (C1)
R

1 250 o2
Mpp=(c1,CP) = — j N dc,,dC e172e72C"¢],CP

R

1 d+2
X {1 +a2{c4+ l—6c‘1‘2+ ——C%2,- (d+2)C?

2d
- d;2c§2+ d(d4+ Z)H, (C2)
then
_ LS T(d+n)/2]T[(d + p)/2]
0 _ o(n-p)2
Mnp =27 I'(d/2)2 @

M
M_‘Ei - +1%[d(n2+ p%) = 2d(n +p) + 2np(d + 2)].

(C4)

Ld dv §(V)I[MS]

* *

V.=V, = —

t o f dV S(V)MV)S(V)
]RZ

f dv §(V)Q[MS]
Rrd

(D1b)
0 f dV S(V)MV)S(V)
]RZ

The denominators of EqqD1) are straightforward to
compute using the formulégC5). We thus find

. B2

V,,]: —(d + 2)(d _ 1)nyolfﬂd dv D” (V)\][MD”]

- Pf av Dij(V)Q[MDij]:| : (D2a)
rd
.. 2mps
V= V= d(d + 2)nV0|:,fRd av S(V)J[MS]
_ pfﬁd dv S(V)Q[MS]i| . (D2b)

The collision operatod defined by Eq(22) is made of the
sum of an annihilation operatdr, with weightp and of an
elastic collisional operatdr, with weight(1-p). Using pre-

Equations(C3) and(C4) may be easily verified using the Vious calculations fot.. [39], we thus obtain the elastic gas

relation

dr2
neal — T I'[(d+n)/2]
Ld O™ = @ gy 0 (9

for « e R*. We thus obtain the decay rates to zeroth order

(43).

APPENDIX D: EVALUATION OF »,, »,, AND v,

Using the first order Sonine expansiof), Eq. (39) re-

duces to

f dvD;;(V)IMDy]
. R

v =

v f dVD; (V) M(V)D; (V)
]RZ

f dV Dy (V)Q[MD;]
Rd

= . (Dl
Vof dv D;(V)M(V)D;(V)
RZ

contributions proportional t61—p) in the right hand side of

Egs.(45).

The following computations are technically simple, but
lengthy. We shall thus only give the main steps. The annihi-
lation contributions, writterv,?, v,2, andv?, are given by

2
*q ,3

== .. . *a,
v,'= d+2d- 1)nvoJRd dV Djj(V)LIMDj]+v,*,

(D3a)

el a_2MB

P e i) o Y SOIHMST b
(D3b)

wherel, is given by Eqs(23) and(2), and

*a’ _ Bz

e a e & PAVIALND,)

(D4a)

L 2mg® f
=T dd+ 2nmg RdO|V S\V)Q[MS].

(D4b)

K _V;L

Using the relation
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f . v, Y(v)L L MX] = 0%1B; J Ny dv,dv,|vy | fO(vy)
R R

XM (V) X(Vo)[Y(vy) + Y(Vy)],
(D5)

PHYSICAL REVIEW E/0, 061102(2004
Mi(f‘k)l = f ddx|x|”e“'°"‘2 XX XXy
R

1
= b(a)[éljkl * 31~ 8ja) (88 + Gidy + 819 |

(D9)

whereX andY are arbitrary functions, changing variables to \ynere

¢i=v;/vy for i=1,2, then changing variables to,,=c;-c,
[in the following we adopt the notatioty,=(Cyy,, . .. ,clzd)]

andC=(c;+c,)/2 in order to decouple the integrals, replac-
ing under the integral sign for symmetry reasons the relations

(C-cy)? by C?¢3,/d, and using

f dC dc,,F(C)G(c1,)(C - ¢10)*
]RZd

3
= f - dc dcle(C)G(clz)<?C4c‘l‘2 - 2dci4c‘l‘2j) ,

(D6)

wherei andj can be chosen arbitrarily in the s, ... d}

b@ = Trd/zg (d+n)(d+n+2)I[(d+n)/2] 1
4 d(d + 2) F(d/Z) a(d+n+4)/2 )
(D10)
Using Egs.(C5) and (F5) we find v’;]a'=v;a'=0. The calcu-

lation can thus be performed and we obtain the first terms in
the right hand side of Eq$45).

APPENDIX E: THE DISTRIBUTION f®

Using the form(27) for f® and the first order Sonine
expansion44) one has

fOV) = MV)[a;S(V)VT +b;S(V)Vin+ coD; (V) Vu].
(ED)

and F, G are arbitrary isotropic integrable functions, one The coefficients, by, andcy may be expressed as functions

obtains
. 1 I'(d/2) !
a= = H d)+v?, (D7
v, dd- l)?Td\'IZF(d"’ 1) 1(a,d) v, (D73
2
. . 1 I'(d/2) !
d=p iz ———=———Hya,d) +v, (D7b
VK VPL d’7Td\e"2 (d + 1) 2(a2 ) VK ( )
I‘ -
2
where

Hiad)= > «a;| dC e2¢°Ci f ddclze-cizﬂcile
R

peok IE

2 A
+ > y”f dc e?°cict
(ij)e0k R

X f y de, e chlglc‘l‘zl, (D8)

with a;; and y; that are functions ofl anda,, Q¥ and 0¥
being the sets of allowed values for the pdirg) defining
the moments in the integral®8). Expressions fow;, v,

of the transport coefficients, thus determinifiy. Equation
(B2) in which we insert the Sonine expansigi) yields

1
- 1)(d+2) )y

n=- dV Dj;(V)M(V)D;(V)
(E2)
n
=- Coﬁa (E3)

where we have made use of the definitigh$) and(41).
Proceeding in a similar way with Eq$B6) and (44) it
follows that

K=y av S(V)M(V)S(V) (E4)
Rrd
__,d+2nk
- a‘l 2 m 21 (E5)
1
m== bld_j dVv S(V)M(V)S(V) (E6)
NJpd
d+2 1
== ble—Bg. (E7)

Replacing in Eq(E1) the coefficientg,, a;, andb, obtained
from Egs.(E3), (E5), and(E7), one obtains the distribution

X, andQ‘; are too cumbersome to be given here. The inte{46).

grals in the first sum of the right hand side of EB8) may

be computed using the formul@5). The integrals in the
second sum may be computed using the particular cage

=k=I of the formula

APPENDIX F: EVALUATION OF &Y, £ aND &Y

The zeroth order and first order distributiofi8 and f
being known, it is possible to compute the first order decay
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rates(26). The procedure is similar to the calculation of the @ e @
zero order decay rates of Appendix C. We first change vari- Mi” = f ddX|X| e XX = M6, (F4
ables toc;=V,/vy, i=1,2, then tocy=c;—C, and C=(c; i
+¢,)/2 so that where
I(d2) \2d+2[v; d d+nl[(d+n)/2] 1
0 BfD]=—n e Ut M@ = a2 _ 5
(U[Af ,Bf ] Pr<d+1> 77_ 4 |:2 d-1 u 2d F(d/2) a(d+n+2)/2 ( )
2 Assuming summation over repeated indices, it is easy to
( 1 1 ) show that
X|k* =VT+u*=Vin|l +n*V.ul,|, , ,
T n' a MEME) = M@M @, (F6)
(F1)
(apg@") = (@pg@")
where o[f,g] is defined by Eqg. (8), (A,B) Mi"Mig = dMEME, (F7)
={(1,9,(V3,1),(1,V3),(V5,1),(1,V)}, Vi=(Vi,,....Vi),  Using the definition(D9) one can show that
and o d+2
2 i MMy’ = =5 =M@, (F8)
l1= f dc;olc; e 7 f dC e %" A(v1C5)B(vrCy)
© e d+2
’ + ’
, d+2 5 MM fn = 3 b@b)s;, (F9)
e cy[1+a,S,(c))], (F2)
no d(d+2) ,
) . MinMidin = =5 —b@b®. (F10
l2= f deylcile?? f dC e7?“A(v1¢,)B(urcy)
R R For symmetry reasons, many of the terms in the integrals
1., 5 (F2) and(F3) vanish upon integration. Nevertheless, the ex-
X\ ey ~ g dic [1+a,S,(cH)]. (F3)  pressions are very cumbersome and the use of symbolic

computation programs is apprecialj3]. Equations(C5),

In the above integralg; andc, are expressed as functions of (D9), (F4), and (F6)—«F9) thus allow us after a lengthy but
C andc;,. Then, in order to compute those integrals onetechnically simple calculation to find the decay rates to first
needs the following additional relations: order(26).
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